Chapter 5
 Backtracking

Graph coloring

- The m-Coloring problem

- Finding all ways to color an undirected graph using at most m different colors, so that no two adjacent vertices are the same color.
- Usually the m-Coloring problem consider as a unique problem for each value of m.

Example

- 2-coloring problem
- No solution!
- 3-coloring problem

Vertex	Color
v1	color1
v2	color2
v3	color3
v4	color2

Application: Coloring of maps

- Planar graph
* It can be drawn in a plane in such a way that no two edges cross each other.

- To every map there corresponds a planar graph

Example (1)

- Map

Example (2)

- corresponded planar graph

The pruned state space tree

Algorithm for Graph Coloring

mColoring (k)
\{
Repeat\{
Next_Value(k)
If(x[k]=0) then return
if/(k=n) then
Write(x[1:n]);
Else
mColoring(k+1);
\}until(false);
\}

Algorithm for nextvalue

```
Next_Value(k)
\{
Repeat
\{
X[k]=x[k]+1 mod(m+1)
If( \(x[k]=0)\) then return;
For \(\mathbf{j}=1\) to n do\{
\(\operatorname{If}((\mathrm{G}[\mathrm{k}, \mathrm{j}] \neq \mathbf{0})\) and \((\mathrm{x}[\mathrm{k}]=\mathrm{x}[\mathrm{j}]))\)
Then break;
\}
If( \(\mathrm{j}=\mathrm{n}+1\) ) then return;
\}until(false);
\}
```

- The top level call to m _coloring

- m_coloring(0)

- The number of nodes in the state space tree for this algorithm

$$
1+m+m^{2}+\cdots+m^{n}=\frac{m^{n+1}-1}{m-1}
$$

Assignment

- Q.1)What is Backtracking?
Q.2)What is application of Graph coloring?
- Q.3)Explain graph coloring with example.

