Chapter 5 Backtracking

Graph coloring

The *m*-Coloring problem

- Finding all ways to color an undirected graph using at most *m* different colors, so that no two adjacent vertices are the same color.
- Usually the *m*-Coloring problem consider as a unique problem for each value of *m*.

Example

- 2-coloring problem
 - No solution!
- 3-coloring problem

Vertex	Color
<i>v</i> 1	color1
v2	color2
<i>v</i> 3	color3
<i>v</i> 4	color2

Application: Coloring of maps

Planar graph

It can be drawn in a plane in such a way that no two edges cross each other.

To every map there corresponds a planar graph

Example (1)

Map

Example (2)

corresponded planar graph

The pruned state space tree

7

Algorithm for Graph Coloring

mColoring (k) { Repeat{ Next_Value(k) If(x[k]=0) then return if/(k=n) then Write(x[1:n]); Else mColoring(k+1); }until(false);

8

Algorithm for nextvalue

```
Next_Value(k)
{
Repeat
{
X[k]=x[k]+1 mod(m+1)
If(x[k]=0) then return;
For j = 1 to n do{
If(( G[k,j]≠0) and(x[k]=x[j]))
Then break;
}
If(j=n+1) then return;
}until(false);
}
```

The top level call to m_coloring

- > m_coloring(0)
- The number of nodes in the state space tree for this algorithm

$$1 + m + m^{2} + \dots + m^{n} = \frac{m^{n+1} - 1}{m - 1}$$

Assignment

- Q.1)What is Backtracking?
- Q.2)What is application of Graph coloring?
- Q.3)Explain graph coloring with example.